警惕 切莫成为大数据分析项目反面典型

TechTarget中国 发表于:12年03月29日 14:22 [转载] TT中国

  • 分享:
[导读]大数据分析现在很火。只要你浏览任何IT出版物或者网站,你都能看到商务智能供应商和他们的系统集成合作伙伴推销帮助企业实施和管理大数据分析系统的产品和服务。

忘记过去所有的教训。

有时企业会走向另一个极端,认为大数据中的一切都是完全不同的,他们必须从头开始。对于大数据分析项目的成功,这种错误可能甚至比认为没有不同更要命。只是因为你希望分析的数据结构不同,并不意味着我们已有的数据管理基本原则需要重写。

没有必备的业务和分析专业知识。

误认为该技术可以实现一切的必然结果就是,相信所有你需要的只是让IT员工实施大数据分析软件。首先,与上述产生商业价值主题相符合,有效的大数据 分析项目必须在系统设计阶段以及持续运营过程中结合广泛的业务和行业知识。其次,许多组织低估了他们需要分析技能的程度。如果大数据分析仅仅是构建报表和 仪表盘,企业可能可以利用他们现有的BI专业技能。然而,大数据分析通常涉及更高级的过程,比如数据挖掘和预测分析。这需要具备统计、决算以及其它高级技 能的分析专业人士,这可能意味着组织需要新聘请人员来迈出向高级分析进军的第一步。

把项目当作科学实验。

太多时候,公司衡量大数据分析项目的成功仅仅是通过数据收集和分析来进行。而事实上,收集和分析数据只是开始。如果结合了业务流程,并促使业务经理 们和用户们为改善组织绩效和业绩而付诸行动之后,分析才能产生商业价值。要获得真正的效率,就需要把分析项目纳入反馈闭环,以便交流分析结果,然后基于经 营业绩提炼分析模型。

承诺太多,想做的太多。

许多大数据分析项目陷入了一个大误区:支持者过度宣扬他们部署的系统会有多么快,业务会获得多么重大的益处。过度的承诺和交付的不足必然导致业务与 技术的分离,这样组织一般会很长时间都推迟特定技术的选用——即便其它许多公司已经使用该技术获得了成功。此外,当你设定了很轻松很快就能获益的预期,业 务主管就有一种认识倾向,容易低估了需要参与和承担义务的程度。当足够资源不能兑现的话,预期的收益通常不会来的容易或者迅速,那么项目基本就贴上了失败 的标签。

大数据分析可以给组织带来很大的商业价值,但是如果你不小心,不从其它公司犯的错误中吸取教训的话,它也可以带来灾难。谨记上述的几点问题,切莫成为大数据分析项目的反面典型。

[责任编辑:王振]
昆腾公司已经算是存储行业的“老手”了,在磁带市场一直保持着优势。随着存储技术的发展,昆腾又适时做出调整,开展磁盘方面的业务。
官方微信
weixin
精彩专题更多
华为OceanStor V3系列存储系统是面向企业级应用的新一代统一存储产品。在功能、性能、效率、可靠性和易用性上都达到业界领先水平,很好的满足了大型数据库OLTP/OLAP、文件共享、云计算等各种应用下的数据存储需求。
12月15日,中国闪存联盟成立,同时IBM Flash System卓越中心正式启动
DOIT、DOSTOR、易会移动客户端播报中国存储峰会盛况。
 

公司简介 | 媒体优势 | 广告服务 | 客户寄语 | DOIT历程 | 诚聘英才 | 联系我们 | 会员注册 | 订阅中心

Copyright © 2013 DOIT Media, All rights Reserved.